NAG Toolbox for MATLAB

s01ea

1 Purpose

s01ea evaluates the exponential function e^z , for complex*16 z.

2 Syntax

[result, ifail] = s01ea(z)

3 Description

solea evaluates the exponential function e^z , taking care to avoid machine overflow, and giving a warning if the result cannot be computed to more than half precision. The function is evaluated as $e^z = e^x(\cos y + i \sin y)$, where x and y are the real and imaginary parts respectively of z.

Since $\cos y$ and $\sin y$ are less than or equal to 1 in magnitude, it is possible that e^x may overflow although $e^x \cos y$ or $e^x \sin y$ does not. In this case the alternative formula $\operatorname{sign}(\cos y)e^{x+\ln|\cos y|}$ is used for the real part of the result, and $\operatorname{sign}(\sin y)e^{x+\ln|\sin y|}$ for the imaginary part. If either part of the result still overflows, a warning is returned through parameter **ifail**.

If Im(z) is too large, precision may be lost in the evaluation of $\sin y$ and $\cos y$. Again, a warning is returned through **ifail**.

4 References

None.

5 Parameters

5.1 Compulsory Input Parameters

1: z - complex scalar

The argument z of the function.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: result - complex scalar

The result of the function.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

[NP3663/21] s01ea.1

s01ea NAG Toolbox Manual

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

The real part of the result overflows, and is set to the largest safe number with the correct sign. The imaginary part of the result is meaningful.

ifail = 2

The imaginary part of the result overflows, and is set to the largest safe number with the correct sign. The real part of the result is meaningful.

ifail = 3

Both real and imaginary parts of the result overflow, and are set to the largest safe number with the correct signs.

ifail = 4

The computed result is accurate to less than half precision, due to the size of Im(z).

ifail = 5

The computed result has no precision, due to the size of Im(z), and is set to zero.

7 Accuracy

Accuracy is limited in general only by the accuracy of the standard functions in the computation of $\sin y$, $\cos y$ and e^x , where x = Re(z), y = Im(z). As y gets larger, precision will probably be lost due to argument reduction in the evaluation of the sine and cosine functions, until the warning error **ifail** = 4 occurs when y gets larger than $\sqrt{1/\epsilon}$, where ϵ is the **machine precision**. Note that on some machines, the intrinsic functions SIN and COS will not operate on arguments larger than about $\sqrt{1/\epsilon}$, and so **ifail** can never return as 4.

In the comparatively rare event that the result is computed by the formulae $sign(cos y)e^{x+ln|cos y|}$ and $sign(sin y)e^{x+ln|sin y|}$, a further small loss of accuracy may be expected due to rounding errors in the logarithmic function.

8 Further Comments

None.

9 Example

```
z = complex(1, +0);
[result, ifail] = s0lea(z)

result =
    2.7183
ifail =
    0
```

s01ea.2 (last) [NP3663/21]